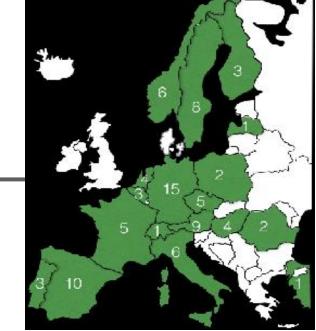


Al for Digitizing Industry Exploring the future 23 January 2020

ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

Tullio Salmon Cinotti

ARROWHEAD TOOLS


Outline

Quick project review

Positioning the project in the history of interdisciplinary European research in digitalization (FP7 and H2020)

Arrowhead Tools

ECSEL INNOVATION ACTION 2018 CALL

Automation and Digitalisation Engineering project

Largest in Europe

18 countries

81 partners + 7 linked third parties

9.394 pm (241 py/y \rightarrow 0,92 person-year per working day)

97 M€ budget

MAX Contribution: EU - 22,7/90,7 -National: 25,2/96,9

Duration 2019-2022 (39 months, kick off: May 2019 Goteborg)

Coordinator: Prof. Jerker Delsing,

Lulea University of Technology

Why Arrowhead? Why Tools?


Arrowhead:

FP7 Innovation Pilot Project (2013-17)

A framework for I/O intensive and cooperative automation

Tools:

Tools supporting the entire life cycle of I/O intensive system of systems for cooperative automation (enablers for sustainable AI applications)

From the italian team perspective

2009-14

Semantic Interoperability SOFIA

Electric Mobility
Internet of
Energy

2013-17


Arrowhead

- 1. Framework
- 2. Electric Mobility Infrastructure

2019-22

- 1. Generalize the scope
- Create tools to cover the entire life cycle of the IOT edge in SoS

What is the specificity of Arrowhed Tools?

Goal: Moving forward baselines with tools supporting:

- Reduction of engineering costs
- Interoperability
- New services
- Tools are project target
- Use cases are benchmarks to validate the tools

Approach:

- The Arrowhead Framework is the «enterprise bus» that binds all tools
- Tools are targeting the entire engineering process

Countries and main Partners

18 Countries

Sweden

Austria

Belgium

Czech Republic

Germany

Finland

France

Hugary

Italy

Latvia

The Netherlands

Norway

Poland

Portugal

Romania

Spain

Switzerland

Turkey

Some of the

81 partners

ABB

Bosch

CEA

Infineon

Infineon Austria

Philips

ST-Italy

ST-France

Volvo

SINTEF, VTT

LTU, TU/E

Some of the

domains of the

21 usecases

Energy

Manufacturing

Smart City

Use cases and motivation

Task 7.1 (ULMA)

Integration of electronic design automation tools with product lifecycle tools (REUSE, U3CM, BEIA, ROP)

Task 8.1 (CAMEA)

Automated Formal Verification BUT. EXPLEO. AIT.

Task 8.5 (FAUT)

CNC machine automation MON, IKERLAN

Task 9.1 (KAI)

Support quick and reliable decision making in the semiconductor industry

Task 7.3 (ARCELIK)

Rapid HW prototyping, testing and evaluation (EDI,

Task 8.2 (PHC)

Engineering processes and tool chains for digitalised and networked diagnostic imaging PHC, TUE, Technolution

Task 8.6 (ACCIONA)

Machine operation optimisation dotGIS, AITIA, BME

Contactless Module

Testers

Task 9.2 (IFAT)

for

Virtual Commissioning of a Cyber-Physical System for increased flexibility

Task 9.3 (VTC)

Task 7.4 (DAC)

Configuration tool for

autonomous

provisioning of local

clouds

Task 8.3 (ASML)

nteroperability between

(modelling) tools for cost

effective lithography

(ICTG, TUE)

Task 8.7 (SAP)

Digital twins and

structural monitoring

Jotne, NTNU, HIOF,

Tellu

Production Support. Energy Efficiency, Task Management. Data Analytics and **Smart Maintenance**

Task 9.4 (IFD)

Task 7.6 (3E)

configuration (Sirris)

Task 8.4 (LBB)

Production preparation

tool chain integration

(LQT, POD, LTU)

Task 8.8 (FARR)

Elastic Data

Acquisition System

(IKERLAN, MON)

Deployment and

WP7

Use cases: reduction of solution engineering cost

Use cases: data exchange between IoT/SoS and legacy engineering tools

WP9

Interoperability Across Secure SMART **Industrial Applications**

Task 8.9 (ABB)

Data-based digital twin for electrical machine condition monitoring (VTT)

Task 9.5 (IFAT)

Linking Building Simulation to a Physical **Building** in Real-Time

Task 7.5 (BOLIDEN)

Deployment engine for production related sensor data (LTU and BnearIT)

Task 7.2 (ST-I)

SoS Engineering of IoT edge devices

Task 8.10 (EUROTECH)

SoS engineering of loT edge devices - service integration, data fusion and orchestration functions (ST-I, IUNET, POLITO, REPLY, BEIA, ROP)

Task 9.6 (BOLIDEN)

Secure sharing of IoT generated data with partner ecosystem (LTU, BnearIT)

Task 9.7 (REPLY)

SoS Engineering of IoT edge devices

ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Italian team in Arrowhead Tools (2019-22)

Focus: System of systems Engineering of IoT edge devices

«block» **Functional** design

«block» Procurement engineering

«block» Deployment Commissioning

«block» Operation Management

4 linked

third parties

«block» Maintenance

«block» Evolution

«block» Training Education

4 Regions

Sicilia Lombardia **Piemonte** Emilia Romagna

5 Partners

STM **EUROTECH** REPLY

POLITO

UNIPI UNIMORE **POLIMI UNIBO**

Vertical alliance calibrated for maximum innovation and impact

Build an

integrated

technological

pillar

to enable

sustainable

Al applications

Research Intelligence ARIC

SUSTAINABLE AI FOR INDUSTRY

SOCIETY

METHODS

ALMA AI

TECHNOLOGIES & TOOLS

ARCES

APPLICATIONS
Interdip. Center for climate and sustainability

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

ARCES: technological pillar targeting sensing, data collection and edge processing for sustainable AI applications

ARCES was founded by 4 Departments and hosts:

- two joint labs with large enterprises:
 - > On technology and circuit design: With STM (since 2001)
 - ➤ On embedded systems: With RFI (since 2018)
- an interdisciplinary Phd program on environmental/structural monitoring and risk analysis (24 PhD students)
 - Six multidisciplinary research teams contribute
 With tools for the engineering process of IoT edge devices

Project structure

WP10 - Standardisation

WP11 - Dissemination and Exploitation

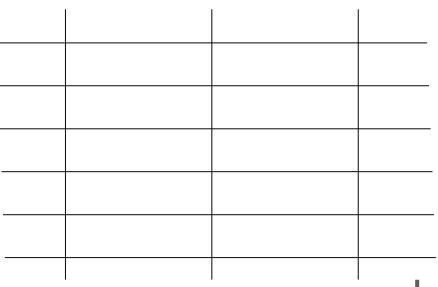
WP12 - Management

WP7 Use cases: reduction of solution engineering cost

WP8 Use cases: data exchange between IoT/SoS and legacy engineering tools

WP9 Use cases: Interoperability Across Secure **SMART Industrial Applications**

WP1 - Requirements and state of the art


WP2 - Digitalisation engineering process

WP3 - Digitalisation framework

WP4 - Tools chain architecture

WP5 - Tool technology

WP6 - Training

KPIs on \rightarrow

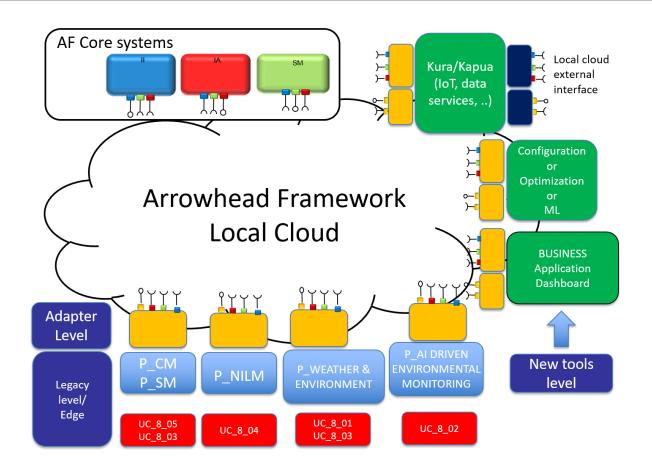
Cost reduction interoperability

services

Use Case Example

"SoS engineering of IoT edge devices" (ST-I)

Specific topics addressed by tools:

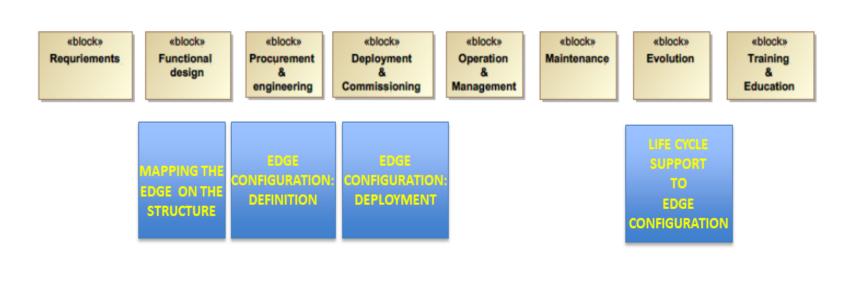

- Design of piezoelectric MEMS
- Applying RISC-V architecture with vector processing capabilities
- Unobtrusive load signature analysis from single energy consumption trace
- Energy harvesting, sensor integration, data fusion and distributed reasoning in energy optimization applications
- Integration of the AF with W3C Web of Things
- Deep learning based tracking
- Vibrations monitoring and anomaly detection in structures

5 demonstrators

- Environmental monitoring
- Al based scene monitoring
- Structural health Monitoring
- Not Intrusive Load monitoring
- Condition Monitoring

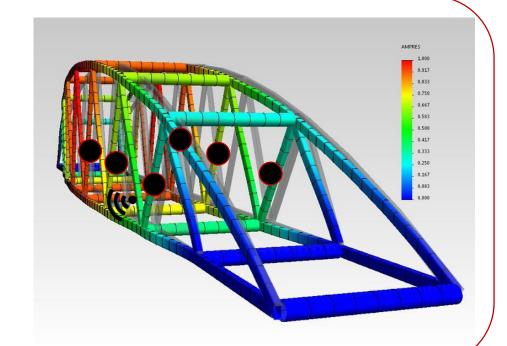


Helicopter view



Smooth merging of use cases targeting different domains

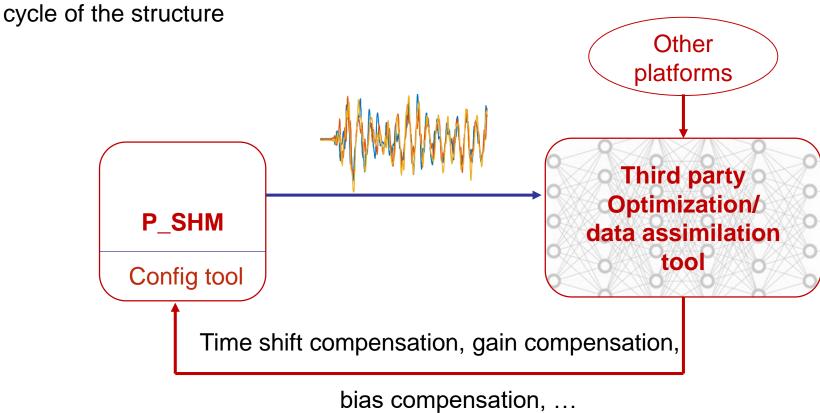
Tool chain


Interoperable data flow among the tools for sustainability

Design time tool

This tool maps the sensing infrastructure on the structure to be monitored

- Sensing infrastructure mapped onto the Structure
- Sensor position optimization
- Visual design tool



Smart Sensor

Evolution time tool

The SHM system optimizes its performance on-the-go during the natural life-

Conclusions

With its large european and calibrated partnership Arrowhead Tools aims to:

- Increase sustainability of digital applications
- Increase european competitiveness
- Create an additional lake of serendipity for innovation and new behaviours

This is the project expected contribution to the «European digital transformation»